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Abstract— A novel scheme has been studied and demonstrated fdvlelvin H. Kalos, George H. Gilmer and B. Sadigh éav

Monte Carlo simulations of diffusion-reaction process. The new
algorithm skips the traditional small diffusion hap and
propagates the diffusing particles over long distas through a
sequence of super-hops, one particle at a time. Bitifoning the
simulation space into non- overlapping protectin@mhains each
containing only one or two patrticles, the algorithfactorizes the
N-body problem of collisions among multiple Brownigrarticles
into a set of much simpler single-body and two-baapblems.
Efficient propagation of particles inside their prettive do- mains
is enabled through the use of time-dependent Greefinctions
(propagators) obtained as solutions for the firségsage statistics
of random walks. The resulting Monte Carlo algorithnis
event-driven and asynchronous;
propagates inside its own protective domain and tsxawn time
clock. The algorithm reproduces the statistics detunderlying
Monte-Carlo model exactly. The new algorithm is eféiat at low
particle densities, where other existing algorithnstow down
severely. Thus we have analyzed the applicationhés algorithm
in the charge distribution and the capacitance detien.

Index Terms—Monte Carlo Simulation, Charge distribution,
capacitance, Markov chain

[. INTRODUCTION

First passage algorithm is a simple and robust coatipnal

approach for simulations of systems evolving thtotapdom
walks. Mathematically, first passage process @srfkxom the
theory of Markov processes in which the model egslirom
state to state through a sequence of stochastisiticns

whose rates depend on the current state alone [R&hdom
walks are typically simulated as sequences of hejtker

from one lattice site to a neighboring one for dise walks,
or through finite displacements for continuum wall&hen

the system dynamics is defined by collisions amdme
walkers, the hops themselves are trivial changeshef
system’s state while significant events take placky when

the walkers collide. A serious computational lestdck is
presented for the first passage method by situatidren the
density of walkers is low. Consider a system ofd@nly

distributed walkers. Many research works have losre on
the Monte Carlo simulation (MCS). James A. Givehi-Ok

Hwang, and Michael Mascagni have shown that MorateéaC
diffusion methods are often the most efficient aittpons for

solving certain elliptic boundary value problemg [1
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introduced a new Monte Carlo simulation method of
diffusion-reaction processes where they have edtrirof
traditional small diffusion hop and made to propgegte
diffusing particles over long distances througlequence of
super-hops, one particle at a time [13-14]. Iri(}-several
methods have been discussed for computing the eharg
distribution and the capacitance by calculating dhfusion

of particle. But these methods have several drakeatich
have been discussed n the [11-12]. Some possihléoss
were given in [15-19] but as system particles allefing the

each Brownian particle Brownian dynamic model the MCS solutions are gegttin

complex. There are few schemes, discussed in 22]-
which have given the idea of solving the problenys b
employing MCS scheme with first passage solution.

In this paper we have presented a novel approaciMdnte
Carlo simulations that is both efficient and exfacta wide
class of models involving collisions among multiple
Brownian particles, as first proposed in Basadexact
solutions for the first passage statistics of randwealks, the
new method is referred to as First Passage Kinktonte
Carlo (First passage Monte Carlo) in the followintp the
new algorithm, the particles are propagated overglo
distances while each walker (particle) is prote¢ssparated
from interference by other walkers) within its owpatial
region. The N regions are non-overlapping anditfar the
space into disjoint spatial domains in which thelesed
walkers are propagated individually. The use stfpassage
statistics for walker propagation permits an elégan
factorization of the N -body problem into a produdtN
single-body problems. Efficient implementationtioé new
method leads to an asynchronous event-driven #hgorin
which every walker propagates within its persomace and
from its own time origin. The resulting speedupni®st
impressive when the density of diffusing partidesow and
particle collisions are rare.

Il.  THEORY OF FIRST PASSAGE M ONTE-CARLO
ALGORITHM

In a Monte Carlo Simulation a random value is delédor
each of the tasks, based on the range of estimates.
algorithm is based on the first passage (FP) andassage
(NP) propagators to skip numerous small steps and t
propagate the walkers to collisions. For the neyo@thm to

be efficient, Monte Carlo sampling from these pgatars
should not entail significant computational overdhela this
algorithm FP and NP propagations replace numerbos s
diffusive hops. The NP propagators are needed alveaiker
propagates right on or close to the boundary afighioring
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the same walker will be selected for the very pegpagation
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again. Therefore MCS cycle entails one FP and plysshe
or few NP propagation, while all other N-1 or N-alkers
stay inactive. This algorithm allows exact and cidffint 2
treatment of particle collisions by protecting gamrdpagating
group of walkers. The ultimate purpose of the MG&huad is
to enable efficient propagation of walkers to tlodlisions

whereas handling of collision events is outsidénefmethod's
main scope.

[lI.  CALCULATION OF CHARGE DISTRIBUTION

If Gauss law gives us charge distribution by theagigpn oo P
U(X) = _%T% V(X+ D) (1) MCONDUCT\ﬂNéRon(m)M o " ” 1
0=0

By the probabilistic potential theory
V(x+¢) is probability density associated with a diffugin
particle initiating at point (x&). The point (x+) is close to the
surface. Diffusing particle performs the randomksdtom a
point on the rod. The particle diffuses to infindy makes a
first passage to the rod. Every point on the razigrabability
of first passage simulating number of random waglkes the
probability distribution of first passage walks V).

Rod is of negligible thickness Length is 1 m mdimd at
1V potential. Diffusion particle start at a point the rod

Figure.1 (c)
Figure.l (a) shows the random walk on the condgatir,;
figure.1 (b) shows the graph for first passage oamavalk to
the conducting rod and the figure.1 (c) has shdwen plot of
varying normalized charge density along the coridgatod
due to the first passage MCS.

This charge distribution scheme is also applicabl¢he
square plate surface. We have taken an examplesgfiare
conducting plate, which has negligible thicknessaaf 1m x
1m and maintained at 1 V potential
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ST PRET: 1 2% ] Figure.2 (a) has shown the random walk of the siffg
particles start from a point on the plate. The candwvalk
Figure.1 (a) either goes to infinity or it makes a first passagehe plate

The walk either goes to infinity or it makes affippssage to
the rod.
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T Figure.2 (b) has shown the plot for first passageiom walk
" J to the conducting rod. In figure.2 (c) the plotsisown for
5 é & ¢ 4 & 4 7 random walks simulation in three dimensions. Three10

CONDUCTHNG ROD random walks are simulated for every point. Thergha
Figure.1 (b) distribution is obtained from the probability dibtrtion.

Published By:
110 Blue Eyes Intelligence Engineering
& Sciences Publication Pwt. Ltd.




International Journal of Soft Computing and Engineeing (IJSCE)

CHARSE DISTRBUTION ON CCNDUCTING PLATE (sigmalsigma min)

Figure.2 (c)
The charge distribution is obtained in figure.2l{g)applying
the first passage algorithm in the conventional rgha
distribution scheme (Gauss'’s law).

IV. CALCULATION OF CAPACITANCE

The computing the capacitance of the unit cubeytinally is
considered to be one of the major unsolved problems
electrostatic theory [6]. However, due to improveisein
computer performance and error analysis for walkgreres
(WOS) Monte Carlo algorithms, we can now calculdie
capacitance of the unit cube to many more sigmifichgits
than previously possible by using a modified Braami
dynamics algorithm. In our algorithm, there areydwlo error
sources: the error associated with the number ofia®
walks N (sampling error) and the error associatédtth &
e-absorption layer. The sampling error convergense

well-known as O (N?), and error analysis for WOS, Monte 2]

Carlo algorithms enables us to control the erromfrthe
e-absorption layer and to get a more accurate ctypee
value for the unit cube. Our result supports theuations
given by the conjectured exact value.

Consider the Robin potential, u, inside G. The lzum
conditions state that the Robin potential is camntséad equal
to one in G. The interpretation of this hearkenskbto
elementary physics where one learns that insideonductor
the electrical potential is constant. Thus we have:

#'u(y)da(y) -1 @

Ji (=)

This equation is valid for pointe® and [v(y) =1| x-y | ].
We get the formula for the capacitance by applyiregMCS

in every open set in théG region. Thus the capacitance cang

be calculated using the following formula:

N -1

1> Wy,

lim —
n-en n=1
To estimate the computational error, we use a Mark
chain version of the central limit theorem. It ettthat

C

®3)

N

%ZV(yn)Tends to a normally distributed random variabl
n=1

with mean I[v] and variance DkHere

/ Trao
oG

2

N
% S (vlyn) — I10D)| (2

V=1

D= lim

N—oo
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To evaluate D .we use the method of batch mearstinét
number of batches, k+ 1, equal to (N¥43nd the batch size
m equal to N? . Thus we have

m k 1 1 2 5
D= lm T2 (w5 59) ©
Where
m(i+1) i
Si = Z v(y;), S =ZS£. (6)
j=mi+1 i—0

Thus equation 3 provide a method to obtain theevalu
capacitance without explicitly calculating the dégns

V. CONCLUSION

In this paper we have studied and analyzed apitaf first
passage MCS theoretically. The calculation of charg
distribution and the capacitance is done succégsfsing the
first passage MCS. The scheme is using positiopadticle
absorbed in the surface to calculate the chargehiison
and the moment of particles to calculate the capace. This
first passage MCS can be applicable to solve eadtegery
boundary value problems, Laplace equations, etc.
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